
Pair connectedness and cluster size

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1977 J. Phys. A: Math. Gen. 10 1123

(http://iopscience.iop.org/0305-4470/10/7/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/10/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen., Vol. 10, No. 7, 1977. Printed in Great Britain. @ 1977 
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Received 8 February 1977 

Abstract. A theory of the pair connectedness is developed for fluid as well as lattice systems 
when the presence of physical clusters of particles in the system is explicitly taken into 
account. Activity and density expansions, an Ornstein-Zernicke relation and the Percus- 
Yevick approximation are established in analogy with the theory of the pair-correlation 
function. A simple application to the percolation problem is given; for a lattice the results 
are compared with the known solution of the Bethe lattice. 

For a fluid system the theory is used to investigate the relation of percolation and 
condensation in a Van der Waals gas: the result shows that an infinite cluster of particles is 
formed in the gaseous phase, along the coexistence curve, before the critical point is 
reached. 

1. Introduction 

The role, in real systems, of physical clusters of particles, first investigated by Hill 
(1955), has been considered in connection with a large variety of problems such as the 
percolation problem (Shante and Kirkpatrick 197 1, Essam 1972), the random resistors 
(Kirkpatrick 1973), the nucleation problem (Binder 1975) and the dilute ferromagnet 
(Elliot and Heap 1962, Rapaport 1972). 

The equilibrium distribution of physical clusters has recently been studied by 
Murmann (1975). In a recent paper (Coniglio et a1 1977a, to be referred to as I) Hill’s 
original work was extended and a general theory of the equilibrium distribution of 
physical clusters (for fluid and lattice systems) was started. 

Activity expansions were obtained for the mean number of clusters of s particles and 
some preliminary considerations on the relation of percolation (formation of an infinite 
cluster) to condensation were given. The point is whether or not a gas-liquid transition 
corresponds to a large growth of the clusters’ size, as this assumption is common to 
many phenomenological theories of condensation (for a good historical survey of these 
theories see Domb 1976). 

In the present work we extend the general theory of cluster distribution with a 
theory of the pair connectedness. This function, related to the probability that two 
particles belong to the same physical cluster, is well known for lattice systems (Essam 
1972) and plays the same role in percolation theory as the correlation function in the 
theory of phase transitions. This extension of the theory will prove particularly suitable 
in the discussion of percolation and condensation as it leads to a density expansion for 
the mean cluster size. The plan of the paper is as follows. In § 2 the pair connectedness 
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is introduced and activity and density expansions obtained; in § 3 an Ornstein-Zernicke 
relation is established (definition of a direct pair connectedness) and an approximate 
form (Percus-Yevick) given. 

In § 4 the relation between pair connectedness and mean cluster sizes, well known 
for lattice systems, is extended to fluid systems: as a consequence activity and density 
expansions for S are established. 

In 0 5 the lowest-order approximation of the theory is established and the percola- 
tion problem is solved in this approximation: for a lattice the result is compared with the 
known solution of the Bethe lattice. 

In § 6 the problem of percolation and condensation is investigated consistently, i.e. 
in the same order of approximation for both the direct correlation function (leading to 
the Van der Waals equation of state) and the direct pair connectedness (leading to the 
mean size of clusters): in this approximation an infinite cluster of particles is formed in 
the gaseous phase, along the coexistence curve, before the critical point is reached 
(figure 1). 

The ‘fluid’ formalism is used throughout the paper but all results can be used for 
lattice systems by an appropriate ‘change of language’. 

A Coniglio, U De Angelis and A Forlani 

2. Pair connectedness 

For a system of N particles with potential energy 

E(r l ,  . . . , rN) = C u(r i j )  
i < j  

we have discussed in I the equilibrium distribution of physical clusters of particles; these 
were defined, starting from Hill’s original work, in terms of f f ( r )  = exp(-pu +(r ) )  bonds 
(P  = l/kBT where T is the temperature and kB the Boltzmann constant) with 

exp(-pu(r)) = exp(-pu+(r)) +exp(-pu * ( r ) )  (2) 

the ‘effective’ potentials between bound and unbound particles u+(r )  and u * ( r )  
respectively being defined as 

{i?) - keT ln F ( r )  
u + ( r )  = 

u(r)>O 
u ( r ) s O  

(3) 

where F(r)  is given by the incomplete r function 

FW = re, -PU wr(+).  (4) 

Use of equations (1) and (2) in the system’s partition function leads to its decomposition 
into clusters of particles with f’ bonds (bound particles) and f *  = exp(-pu *) - 1 bonds 
(unbound particles). As a result physical clusters can easily be obtained from Mayer’s 
mathematical clusters (defined in terms off = exp(-pu) - 1 bonds) by replacing each f 
bond with (f’ + f * )  and selecting from the resulting graphs those where the particles are 
at least pair-wise bound (linked by f +  bonds). We will now make use of this formulation 
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of physical clusters to establish activity and density expansions for the pair connected- 
ness: this is a well known function for lattice systems and we extend it here to fluids. All 
our results will then be valid for fluid as well as lattice systems. 

For a system of N particles, volume V and density p = N/ V with potential energy (1) 
we define the pair connectedness P(ri, r,) such that 

p2P(ri ,  r,) dri drj ( 5 )  

is the probability that particles i and j are in volume elements dr, and drj respectively 
and are physically bound, i.e. belong to the same cluster (in our formalism: there is a 
path off’ bonds between i and j ) .  For a lattice system the function P(ri, r j )  reduces to 
the probability p 2 P i j ( p )  that (for a given lattice with a density p of occupied sites) site i 
and site j are connected by a chain of occupied sites. Our choice of normalization is such 
that P(ri,  r j )  is dimensionless in analogy with the pair-correlation function while p’P(r) 
is the analogue of the pair-distribution function: in the current literature (see e.g. Essam 
1972) it is this last function which is referred to as pair connectedness for lattice systems 
but our choice will be seen to be the most convenient in later sections. 

To obtain an activity expansion for the pair connectedness we can start with the 
canonical pair-correlation function gN(l ,  2) (from here on we simply write i instead of 
r , ) :  in a real fluid 

p 2 g d l ,  2) d l  d2 (6) 
is the probability to find particles 1 and 2 in volume elements d l  and d2 respectively, 
independently of the positions of the remaining particles (see e.g. Hill 1956). We can 
think of this probability as the sum of two contributions: the probability that particles 1 
and 2 belong to the same physical cluster and the probability that they do not belong to 
the same cluster. Recalling equation ( 5 )  we can then write 

gN(1,2)=Pd1,2)+”,  2) (7) 

where P N ( ~ ,  2) is the canonical pair connectedness and DN( l ,  2) has the meaning of a 
‘blocking’ function, i.e. 

p2DN(1, 2) d l  d2 (8) 

is the probability that particles 1 and 2 are in volume elements d l  and d2 and do not 
belong to the same cluster (it is not possible to find a ‘physical’ path between 1 and 2). 
The pair-correlation function has, in the thermodynamic limit, an activity (2) expansion 
given by (see e.g. Rice and Gray 1965) 

1 
g ( l , 2 )  = 1 +? 1 &(l, 2)2“ 

P n 3 2  

where 

1 
( n  - 2)! 

& ( l ,  2)=- 1.. . I U(1,2 , .  . . , n )  d 3 . .  . dn 

where U(1, . . . , n )  = U ( { n } )  are Ursell’s U functions: 

(9) 

where fii are Mayer’s f functions and the sum is over all connected graphs C,, of n 
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labelled points. In the same limit an activity expansion for the pair connectedness can 
be obtained (see appendix 1) starting from equation ( 7 ) .  The result is: 

where 

B,+(1, 2)=- ' 1. . . 1 U+(l, 213,. . . , n )  d3 . . . dn 
( n  -2)! 

and U' can be obtained from U({n})  with the following recipe: in the graphs of U({n} )  
replace each f bond with (f'+f*) and out of the resulting graphs select all those with 
at least one path of all f' bonds between 1 and 2. This subset of graphs is 
U+(l ,  213,. . . , n ) .  Let U*(l,  213,. . . , n ) =  U({n))-U+(l ,  213,. . . , n) .  From equa- 
tions (7), (9) and (12) it  is clear that the blocking function has an expansion: 

with B;(l ,  2)=B,( l ,  2)-B;(l, 2) or: 

BX(1,2) =- ' I.. . U*(l, 213,. . . , n )  d 3 . .  . dn. (15) (n  - 2)! 

The first few coefficients in the expansions (9) and (12) are shown diagrammatically 
below. Here a bold line stands for anf  bond while the full and wavy lines represent f' 
and f* bonds respectively; the open circles are particles 1 and 2 and the full circles are 
field points to be integrated over. 

&(l, 2) = U(1,2)  = - 
B i ( l , 2 ) =  U+( l ,  2 )=  - 
B3(1, 2) = U(1, 2,3)  d3 = I 

B f ( l , 2 )  = U+(1,213) d3 I 

Equation (12) gives the activity expansion of the pair connectedness with a recipe 
(equation (1 3)) to obtain the expansion coefficients from the corresponding coefficients 
(equation (IO)) in the activity expansion of the pair-correlation function. 

We will now show how to derive a density expansion for the pair connectedness from 
the density expansion for the pair-correlation function. Our conclusion will be that 
equation (7)  retains its validity in terms of density expansions with the same recipe to 
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obtain the coefficients in the expansion of P( 1,2) :  take the coefficients (diagrams) in the 
density expansion of the total correlation function h(1 ,  2) = g ( l , 2 )  - 1, substitute eachf 
bond with (f' +f*) and out of the new diagrams select those with at least one path of all 
f' bonds between 1 and 2. Consider, in fact, the density expansion of the total 
correlation function (see e.g. Munster 1969): 

where the &,,z are irreducible cluster integrals of the second kind: the corresponding 
graphs are such that they b.ccome multiply connected (stars) through addition of the 
directf(1, 2) bond. These graphs do not contain articulation points whereas the graphs 
in the activity expansion are simply connected, i.e. they contain articulation points. It is 
easy to show (Stell 1964, Wortis 1974) that if we sum in the activity expansion all the 
graphs departing from an articulation point the result is the density in that point: 
therefore we can obtain the density expansion (16) simply by replacing all the terms 
departing from any articulation point in the activity expansion with a factor p.  Now we 
can think of the diagrams in the activity expansion as basic Pm,2 and f12Pm,2 diagrams 
with all possible diagrams attached to each vertex: since particles 1 and 2 always belong 
to the basic diagrams it is only thef bonds of these diagrams which are decomposed into 
f' and f* bonds in order to extract P(1,2) .  Since the basic diagrams are transferred 
without alterations into the density expansion the diagrammatic separation implicit in 
equation ( 7 )  is maintained in the summation process leading to the density expansion. 
The new coefficients of P(1,2)  will then be given by those basic diagrams with at least 
one path of allf' bonds between 1 and 2 and this is just the anticipated recipe to extract 
P(1, 2; p )  from h(1, 2; p ) .  Thus we write (from equation (16)): 

where P;,2 is obtained from Pm,z with the usual recipe. A density expansion for the pair 
connectedness has been given by Essam (1972, see also Cox and Essam 1976) for a 
lattice system with zero interaction. The particular importance of a density expansion 
for the pair connectedness will become clear in the next section. 

3. Direct pair connectedness 

In this section we show how, in complete analogy with the Ornstein-Zernicke theory 
(see e.g. Munster 1969), it is possible to obtain the pair connectedness by summation of 
a particular class of diagrams in its density expansion. A general diagram in the 
expansion (17) will consist of paths off' andf* bonds joining 1 and 2 through a certain 
number of field points (with at least one of these paths being made of allf' bonds): we 
define nodalpoint as a field point such that all paths between 1 and 2 pass through that 
point. A nodal diagram is then a diagram containing at least one nodal point. It is then 
possible to separate the diagrams associated with P(1,2) into two distinct subsets: nodal 
and non-nodal diagrams. Let C+(1,2)  be the function associated with the subset of 
non-nodal diagrams (we shall call this function direct pair connectedness in analogy 
with the direct correlation function) and N+( l ,  2) the function associated with the 
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subset of nodal diagrams; then: 

P(1,2)  = C'(1, 2)+N+(1,2). (18) 

Now let us look at the nodal diagrams. In the set N+(1,2) there are nodal points, there 
is at least one path off' bonds between 1 and 2 and no graph of this set will contain the 
directf'(l,2) bond (since the pathf'(l,2) passes through no field point). Let 3 be the 
nodal point closest to 1: all paths from 1 pass through 3, in particular the path (or paths) 
of all f' bonds. Then between 1 and 3 there are all diagrams without nodal points and 
with at least one path of allf' bonds: that is C'( 1,3). Between 3 and 2 then there will be 
all possible diagrams (with or without nodal points) but with at least one path off '  
bonds: that is P(3,2). The set of nodal diagrams N'(1, 2) is therefore obtained if we 
combine each diagram of the set C'(1, 3) with each diagram of the set P(3,2)  i.e. 
N'(1, 2) is given by the convolution integral: 

Ni( l ,2 )=pIC'(1 ,3)P(3 ,2)d3 (19) 

P(1, 2) = C+(1, 2)+p  I C+(1,3)P(3,2) d3  

h ( l , 2 )  = C(1,2)+p I C(1,3)h(3,2) d3. 

multiplied by the particle density associated with the field-point 3. 
Equation (18) therefore becomes: 

(20) 

in complete analogy with the Ornstein-Zernicke relation for the total correlation 
function: 

(21) 

The Fourier transform of the pair connectedness is therefore completely determined by 
the Fourier transform of the sum of only non-nodal diagrams of P(1,2) through: 

C+(K)  
1 -p6'(K) 

F ( K )  = 

The importance of the direct pair connectedness and equation (22) can immediately be 
appreciated: it is now possible to find an approximate, explicit, form for P(1,2), the 
Percus-Yevick (PY) approximation. In the theory of fluids the PY form of the pair 
correlation function g p y ( r )  is a well known approximation which seems to work quite 
satisfactorilyfor some range of the density. Its form is (see e.g. Rice and Gray 1965): 

fpy( 1,2) esu(1*2) = 1 +N(1,2)  (23) 

where N(1,2) is the function associated with the subset of nodal diagrams in the density 
expansion of g( l ,2 ) .  We can separate these diagrams into two distinct subsets 

N(1 ,2 )=N+( l ,  2)+N*(l ,  2) (24) 

where N'( 1, 2) has been defined (see equation (1)) and N*( 1,2)  are all nodal diagrams 
such that there is no path of allf' bonds between 1 and 2. Then from equation (23) we 
have: 

g P Y ( L 2 )  = (1 +f12)(1 +N12) = (1 + f t Z + f T Z ) ( l  +NtZ+NTZ) (25) 
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which can be written as: 

gpy( 1,2) =fT2 +fT2NI2 +f72NT2 + Nt2 + (diagrams which 

contain no path of all f’ bonds between 1 and 2). (26) 

Recalling equation (7) and the definition of pair connectedness we conclude that the 
first terms in equation (26) are nothing but the PY approximation to the pair connected- 
ness: 

P P Y (  1,2) = fT2 +fT2N12 + f T 2 K 2  + N:2 (27) 

which, using equations (18) and (23) can be written as: 

Ppy(l, 2) = e-pu+(1,2)gpy(l, 2) epu(1~2)+e-Bu*(1~2)(Ppy(l, 2) - G Y ( 1 ,  2)). (28) 

This equation, together with equation (22), can be solved (by iteration) for systems 
where the PY approximation gpy(r) is known to obtain the PY approximation to the pair 
connectedness. Another well known approximation in fluid theory is the HNC (hyper- 
netted chain) equation (see e.g. Rice and Gray 1965): the diagrams involved in this 
approximation however cannot be easily separated to extract the ones belonging to the 
pair connectedness. We do not pursue the subject any further here. 

4. Mean size of physical clusters 

The pair connectedness can be used to determine the mean size of physical clusters S. 
This typical percolation quantity is given by (Essam 1972): 

where n, is the equilibrium number of physical clusters of s particles whose activity 
expansion has been derived in I: 

n, = V c z N  Nsbbl 
NZ=s IN/ 

where IN1 is a partition of N such that 
Mayer’s integrals bN (see I for details): 

sN, = N and bjNl can be obtained from 

biNl=b,=-/. 1 . . / U({n})dl. .  .dN.  
IN1 N !  V 

For a lattice it is easy to see (Essam 1972) that the mean size S can be obtained directly 
from the lattice pair connectedness Pij by: 

S = l + - I  P Pi, 
A” i + j  

where p is the density of occupied sites and K the total number of sites. Here our aim is 
to extend the formalism to fluid systems and we therefore look for the appropriate 
generalization of equation (3 1). Intuitively the summation over lattice sites should be 
replaced by an integration: this turns out to be true but the proof is not straightforward 
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and is given in appendix 2. The result is: 

S = 1 + p  P ( r )  dr. (32) I 
Introducing the Fourier transform @ ( K )  of the pair connectedness equation (32) reads: 

s = 1 +p@(O). (33) 

Using equation (22), S can be written in terms of the direct pair connectedness as: 

1 
S =  

1 - p 6 + ( 0 )  

to be compared with the isothermal compressibility xT:  

(34) 

where 6 ( K )  is the Fourier transform of the direct correlation function. The direct pair 
connectedness can immediately be used to determine the percolation critical density pp:  
this is the solution of the equaticn 

P ~ ~ + ( O ,  pP, T )  = 1. (3 6) 

In general equations (34) and (35) can be used consistently (same diagrammatic 
approximation for the direct functions) to study the behaviour of the mean size of 
physical clusters in the neighbourhood of the critical point (JT+co) and along the 
condensation curve of a gaseous system. In § 5 we use them to investigate the relation 
of percolation to condensation for a gas in the Van der Waals approximation: this was 
left as an open question in I where percolation and condensation (in the sense of Mayer) 
were first compared. 

5. Percolation 

To lowest order C+(1,2)  =f'(l, 2) and equation (36) gives for the percolation critical 
density: 

P p  = l/P(O) (37) 
where 

To the same order the pair connectedness and mean cluster size are (see equations (22) 
and (34)): 

S = p P .  
PP-P 
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For completeness we also give the result of the calculation of the mean number of 
clusters to this order: 

1 Ps = P -%lp2; B:= [Bl (1 ,2)  drI2. 
S 

This can be obtained from the activity expansion of the partial densities ps in the tree 
approximation (summation of tree diagrams). For small values of wavenumber K we 
can write: 

F ( K )  = f+(O)( 1 -CUP) (41) 

and then: 

with the 'connectedness length' given by: 
1/2 

[=(E) . 
P p - P  

(43) 

From equation (42) we obtain the asymptotic (large-r) behaviour of the pair connected- 
ness in d dimensions: 

P(r) - e-r/5/rd-2. (44) 
For an Ising model with coordination number q and nearest-neighbour interaction J we 
have from I: 

where 

f ; = epceij ; E =45  

and 

1 if i and j are nearest neighbours 

From (37) we then have: 

1 -  p =-e  
p 4  

This is less, for all values of p, then the percolation density 

(47) 

in the Bethe lattice although the two results are both increasing functions of tempera- 
ture (Coniglio 1976, Odagaki 1975, Kikuchi 1970) as expected. This behaviour as a 
function of temperature has not been proved in general, as far as we know, for the 
percolation density but only for the percolation activity (Lebowitz and Penrose 1976). 
Notice that from equations (40) and (48) it follows that the mean cluster size is a 
decreasing function of temperature: in particular at low densities, where the present 
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approximation is valid. As for the critical indices equation (40) shows that S diverges 
at pp with critical index yp = 1 in agreement with the result on the Bethe lattice (Fisher 
and Essam 1961); equation (43) shows that 6 diverges at pp with critical index vp = 1/2 
and equation (44) shows that at p = pp: 

~ ( r )  - l/rd-2+rlp (50) 

with critical index vp = 0. 
The last two critical indices do not coincide with the corresponding indices of the 

Bethe lattice where vp = vp = 1 (Coniglio 1976). Notice that Toulouse (1974) has 
suggested that a critical dimensionality d, = 6 obtains from the classical critical indices 
vp = 1/2, yp = 1, pp = 1 (where pp is related to the percolation probability): these indices 
are often all attributed, incorrectly, to the Bethe lattice. Finally we point out that the 
percolation density of the Bethe lattice (equation (49)) reduces to the lowest-order 
approximation (equation (48)) in the limit q + W .  

6. Percolation and condensation 

In I we started a study of the relation between formation of an infinite cluster of particles 
and condensation of the system. This problem was dealt with by explicit calculation of 
the mean cluster number and mean cluster size in the chain approximation (summation 
of chain diagrams in the activity expansions). Of course we had to treat condensation in 
the sense of Mayer (pressure-activity plane) since the percolation quantities where 
functions of the activity z .  The percolation activity zp and condensation activity z ,  were 
found to coincide as far as the interaction between clusters was not completely taken 
into account. The complete calculation (full interaction) of the mean cluster size was 
not given in I and the coincidence of percolation and condensation in the chain 
approximation was left as an open problem. 

For completeness we might mention here that the complete calculation of S in the 
chain approximation can be easily carried out via the pair connectedness and the result 
is zp # z,. 

The results of the present work however make possible a further study of the 
problem as a function of density rather than activity: we can therefore treat condensa- 
tion in the pressure-density plane rather than in the sense of Mayer. 

In this section we study the percolation of a gaseous system undergoing condensa- 
tion. The question is: on a given isotherm is the percolation density pp lower or higher 
than the transition density pG? 

The simplest equation of state which does contain all the necessary features 
(condensation and critical point) is the Van der Waals equation 

kB Tp P + ap2 = - 
l - b p  

where the parameters a and b are given in terms of the critical point values: 

l a  p c = - -  
27 b2' 

8 a  
27 b 

kBTc=-  -; 
1 

The point now is to find the percolation density consistently, i.e. in the same 
approximation as equation (5 1). Consistency can easily be obtained starting with 
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equations (34) and (35). It is known that integration of equation (35), recalling that 

leads to the virial expansion for the pressure (see e.g. Munster 1969): 

p P = p - J  p c ( O ) d p = p +  B,p" 
n a 2  

(54) 

In other words: an approximation in the virial series (order m in the density) is 
equivalent to stopping at order m = 2 in the density expansion of the direct correlation 
function. 

Thus the approximation of the second virial coefficient 

PP = p  +B*" ( 5 5 )  

is consistent with: 

C(r) = f (1) (56) 

C+(r) = f + ( r )  (57) 

and therefore 

i.e. the percolation density consistent with an equation of state (55 )  is given by equation 
(37). For a potential equal to hard core plus attractive part: 

equation (55 )  is almost exactly equivalent to equation (51) with: 

b = $.rrr;; a = uob (59) 
(see e.g. Pathria 1972). 

potential (58). 
We can therefore obtain the percolation density p,(T) by evaluating J"(0) with the 

We have (see equations (3) and (4)): 

which, to first order in Buo(ro/r))" (consistently with the evaluation of Bz( T)) ,  gives 
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Eliminating ro and uo through the relations (59), introducing the variable x = T/Tc and 
using (52) we finally have: 

for the percolation density as a function of the temperature. 

in  the variables p c - p  and T,- T we find: 
In the neighbourhood of the critical point ( p G S p c r  T S  T,) expanding equation (51) 

P G k )  3 - 
pc 3+ 1.92(1 - x ) ~ ” ‘  

Then: 

P= o.21x3’2[3+1~92(1-x)1’2]<1 
P G b )  

leading to the conclusion: the percolation point is always located (on a given isotherm) 
before the transition point (in the neighbourhood of the critical point). 

P /P: 

Figure 1. Reduced gas-liquid coexistence curve pc/pc against TIT, of a Van der Waals gas 
and percolation curve pp/pc against T/T,  in the same approximation (second virial 
coefficient). pc and T, are the density and temperature of the critical point from the Van der 
Waals equation. Above the ‘percolation’ temperature T, an infinite cluster is formed in the 
gaseous phase before condensation. 

For a comparison of the whole coexistence curve pG(T)  with the percolation curve 
(64) it is convenient to write equation (51) in terms of the reduced variables P / P c ,  p/p, ,  
X :  

The coexistence curve p G ( x ) / p c  can then be obtained numerically from equation 
(67) by equating the Gibbs potentials p ( p G ,  T )  = p ( p L ,  T )  of the gas and liquid phases 
at those points where P ( p G ,  T )  = P(p, ,  T) .  

The result is shown in figure 1 together with equation (64) for the reduced 
quantities: it is therefore valid for a large class of substances (law of corresponding 
states). 

Figure 1 shows the existence of a temperature Tp where percolation and condensa- 
tion coincide: an infinite cluster is formed in the system before condensation only €or 
T >  Tp. 
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The same result has been found for three-dimensional lattices (Muller-Krumbhaar 
1974, Sykes and Gaunt 1976) and for the Bethe lattice (Coniglio 1976) while for two- 
dimensional lattices it is always T p  = T, (Coniglio et a1 19776). 

7. Conclusions 

We have developed a theory of the pair connectedness, for fluids and lattices, in  
complete analogy with the theory of the pair-correlation function. 

This allows a treatment of the percolation problem, in discrete as well as continuous 
systems, parallel to the Ornstein-Zernicke theory of phase transitions. 

Via the pair connectedness, activity and density expansions for the mean cluster size 
have been obtained. Series expansions for the mean cluster number and the percolation 
probability are under investigation. 

The problem of percolation and condensation in a fluid has been solved in the Van 
der Waals approximation: an infinite cluster of particles may appear in the gaseous 
phase before condensation. 

This problem might be worth further investigation in higher-order approximations: 
of particular interest would be the knowledge of some observable quantity connected 
with the mean cluster size. 

Appendix 1 

We wish here to prove that the pair connectedness has the activity expansion given by 
equation (12). 

We start with equation (7) and look for an explicit expression for P,(l, 2). The 
canonical pair-correlation function can be written as (see Rice and Gray 1965): 

where Z, is the configurational integral and W({N})  are Ursell's W functions: 

the sum going over all graphs GN of N labelled points. 
If we now replace eachf bond in the graphs of W({N})  with (f' +f*) we obtain a new 

set of graphs which can be separated into two subsets: one, which we call Wf2({N}), such 
that each graph contains at least one path of all f' bonds between 1 and 2 and the 
second, W 2 ( { N } ) ,  such that no graph will contain a path of allf' bonds between 1 and 2. 
Then: 

('4.3) W(" = Wt2(" + WT,(". 
But since (see equation (1)) W({N})  = exp(-PE({N})) is the statistical weight of the 

configuration (1, 2, . . . , N )  then Wf2({N}) is the statistical weight of a configuration 
(1,2, . . . , N )  such that 1 and 2 belong to the same cluster. 
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Recalling the meaning of PN(1,2) we can therefore write, in analogy with equation 
(A.1): 

Pd1, 2 ) z v z  1. . . WTz({N}) d{N-2). 
2, 

The argument leading from (A.l) to an activity expansion of the pair-correlation 
function can now be used to obtain the expansion of the pair connectedness: for clarity 
we briefly recall its main steps. 

The procedure (for details see Rice and Gray 1965) is to expand the set W({N}) 
according to: 

W({N})= U(l)W(2,3, . .  . ,N)+c U(l, i)W(2,3, .  . . , i - l , i + l , .  . . ,N)+. .  . 
P 

+I U ( l , i l , . .  . , in- l )  W(2, . .  . , i i - l , i j + l , .  . . , N ) + .  . .  
P 

alljE 1, .  . . , n  - 1 

where U({N}) are Ursell's U functions (see equation (9)) and Zp means the sum over all 
ways of choosing particles i, il ,  etc out of the remaining N -  1 particles (1 has been 
singled out). When this expansion is inserted in (A. 1) two types of contribution may 
arise in the general term of order n according as the set (il, . . . , does, or does not, 
include 2. 

The contribution of the terms which do not include 2 is shown to be unity (in the 
thermodynamic limit). The terms including 2 are (to order n): 

1...[U(1,2,i1,...,i,,-z)W(3 , . . . ,  i i - l , i i+ l  ,..., N)d{N-2} al l jEl ,  . . . ,  n - 2  
all jel ,  . . . ,  n-2 

= 1. . . 1 U(1,2, il, . . . , d{n -2) 

X [  ...I W(3 , . . . ,  i i - l , i i+ l  , . . . ,  N)d{N-n} 

=&.-,,I.. . 1U(l ,2 , , i t , .  . . , in-z)d{n-2}=ZN-,(n-2)!B,,(1,2) (A.6) 

since the configurational integral of K particles is: 

ZK = 1. . . W ( W )  d{KJ 

and B,,(l, 2) has been defined in equation (8). 
Taking into account the number of terms of order n and summing over n we obtain, 

in the thermodynamic limit, the activity expansion (equation (9)). 
If we now repeat the argument starting from (A.4) it is clear that in the general term 

of order n we have to consider only the contribution arising when 1 and 2 are 
connected: in fact, if there is no path off bonds between 1 and 2 it will be impossible to 
find a path off' bonds. 

So we only have to consider terms of the form (A.6) but, because of the meaning of 
wz({w), the expansion can only contain graphs with at least one path of all f' bonds 
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between 1 and 2, that is: 

WT2({N}) = W(17 2) W(3, . . . , N )  

+E u+(1 ,2 l i l7 . .  . , i n - 2 ) ~ ( 3 , . .  . , i j - I , i j + I , .  . . , N ) + . .  . (A. 7) 

where U+(l, 213,. . . , n )  is the subset of graphs obtained from the graphs in 
U(1,2, . . . , n) selecting those with at least one path off' bonds between 1 and 2 (after 
the substitution of each f bond with f' +f*). 

P 

The terms of order n in P N ( l ,  2) are therefore of the form: 

2, -.I.../ U+(l,21i1 , . . . ,  in-2)d(n-2}=Z~-.(n-2)!B,+(1,2) 

where B;(1,2) has been defined (see equation (13)). 
The same argument leading to (9) leads now to the expansion (12). 

Appendix 2 

We show that for fluid as well as lattice systems the mean size of physical clusters can be 
obtained from the pair connectedness P(r) by: 

S =  l + p l P ( r ) d r .  (A.9) 

Recalling equation (32) and the expression of the density of finite clusters 

P =c SPS (A. 10) 
S 

where ps = n,/V is the partial density of clusters of s particles, equation (A.9) is 
equivalent to: 

Introducing the activity expansions (16) and (33) for P(1,2) and ns we have 

In I the coefficients blNl were obtained from Mayer's cluster integrals bN: 

1 r  

b N  =- I J U(1,2, .  . . , N )  d{N} 
N !  V 

and we can therefore write: 

(A. 11) 

(A.12) 

(A.13) 
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Using equation (14) we can then write equation (A. 11)  as: 

I U+(1,213,. . . , N )  d{N} N N ( N - l )  

N 2 2  N !  
-N r 

(A.14) 

The two series are equal if the coefficients of each power of z are equal. The validity of 
equation (A.9) is therefore established once we prove that: 

N 

s =2  
N ( N  - 1) I U'( 1,213, . . . , N )  d{N} = S (S - l)Ns Upq( 1, . . . , N )  d{N}. (A. 15) 

Consider now the quantity: 

Because of the integration over all the particles it is: 

I U'( 1,213, . . . , N )  d{N} = U+(i, jlN - 2) d{N} I 
where (i , j)  is any of the possible couples of particles 1, . . . , N. Then: 

(A.16) 

In the last sum are all the graphs of U({N})  with at  least one path of all f' bonds 
between i and j ,  that is with particles i and j belonging to the same physical cluster, for 
any of the possible couples i, j which can be formed from particles 1 , 2 , .  . . , N. The 
same graphs are clearly obtained if we consider directly the physical clusters 

c I UIrq(1, * * . 9 N )  d{N} 
IN1 

with no particular attention to any selected couple of particles: but then we have to 
multiply each partition by the number of ways of choosing any two particles physically 
bound (at least one path of allf+ bonds) in that given partition; in a cluster of s particles 
there are s(s - 1)/2 ways of choosing a bound couple and if there are Ns clusters of s 
particles there will be s(s-l)Ns/2 ways: the total number of ways (in the given 
partition) is obtained summing over all possible clusters of 2 ,3 ,  . . . , N particles: 

Summation over all partitions then gives the total number of ways of choosing any 
two particles physically bound, i.e. all the graphs in the sum in equation (A.17): 

(A. 18) 

From (A.17) and (A.18) equation (A.15) is obtained thus concluding our proof. 
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